Reference: Saric J, et al. (2006) Extraction of regulatory gene/protein networks from Medline. Bioinformatics 22(6):645-50

Reference Help

Abstract


MOTIVATION: We have previously developed a rule-based approach for extracting information on the regulation of gene expression in yeast. The biomedical literature, however, contains information on several other equally important regulatory mechanisms, in particular phosphorylation, which we now expanded for our rule-based system also to extract. RESULTS: This paper presents new results for extraction of relational information from biomedical text. We have improved our system, STRING-IE, to capture both new types of linguistic constructs as well as new types of biological information [i.e. (de-)phosphorylation]. The precision remains stable with a slight increase in recall. From almost one million PubMed abstracts related to four model organisms, we manage to extract regulatory networks and binary phosphorylations comprising 3,319 relation chunks. The accuracy is 83-90% and 86-95% for gene expression and (de-)phosphorylation relations, respectively. To achieve this, we made use of an organism-specific resource of gene/protein names considerably larger than those used in most other biology related information extraction approaches. These names were included in the lexicon when retraining the part-of-speech (POS) tagger on the GENIA corpus. For the domain in question, an accuracy of 96.4% was attained on POS tags. It should be noted that the rules were developed for yeast and successfully applied to both abstracts and full-text articles related to other organisms with comparable accuracy. AVAILABILITY: The revised GENIA corpus, the POS tagger, the extraction rules and the full sets of extracted relations are available from http://www.bork.embl.de/Docu/STRING-I.

Reference Type
Evaluation Studies | Journal Article | Research Support, Non-U.S. Gov't
Authors
Saric J, Jensen LJ, Ouzounova R, Rojas I, Bork P
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference