Reference: Schoondermark-Stolk SA, et al. (2006) Rapid identification of target genes for 3-methyl-1-butanol production in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 70(2):237-46

Reference Help

Abstract

Extracellular conditions determine the taste of fermented foods by affecting metabolite formation by the micro-organisms involved. To identify targets for improvement of metabolite formation in food fermentation processes, automated high-throughput screening and cDNA microarray approaches were applied. Saccharomyces cerevisiae was cultivated in 96-well microtiter plates, and the effects of salt concentration and pH on the growth and synthesis of the fusel alcohol-flavoured substance, 3-methyl-1-butanol, was evaluated. Optimal fermentation conditions for 3-methyl-1-butanol concentration were found at pH 3.0 and 0% NaCl. To identify genes encoding enzymes with major influence on product formation, a genome-wide gene expression analysis was carried out with S. cerevisiae cells grown at pH 3.0 (optimal for 3-methyl-1-butanol formation) and pH 5.0 (yeast cultivated under standard conditions). A subset of 747 genes was significantly induced or repressed when the pH was changed from pH 5.0 to 3.0. Expression of seven genes related to the 3-methyl-1-butanol pathway, i.e. LAT1, PDX1, THI3, ALD4, ILV3, ILV5 and LEU4, strongly changed in response to this switch in pH of the growth medium. In addition, genes involved in NAD metabolism, i.e. BNA2, BNA3, BNA4 and BNA6, or those involved in the TCA cycle and glutamate metabolism, i.e. MEU1, CIT1, CIT2, KDG1 and KDG2, displayed significant changes in expression. The results indicate that this is a rapid and valuable approach for identification of interesting target genes for improvement of yeast strains used in industrial processes.

Reference Type
Journal Article
Authors
Schoondermark-Stolk SA, Jansen M, Veurink JH, Verkleij AJ, Verrips CT, Euverink GJ, Boonstra J, Dijkhuizen L
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference