Reference: Imazu H and Sakurai H (2005) Saccharomyces cerevisiae heat shock transcription factor regulates cell wall remodeling in response to heat shock. Eukaryot Cell 4(6):1050-6

Reference Help

Abstract


The heat shock transcription factor Hsf1 of the yeast Saccharomyces cerevisiae regulates expression of genes encoding heat shock proteins and a variety of other proteins as well. To better understand the cellular roles of Hsf1, we screened multicopy suppressor genes of a temperature-sensitive hsf1 mutation. The RIM15 gene, encoding a protein kinase that is negatively regulated by the cyclic AMP-dependent protein kinase, was identified as a suppressor, but Rim15-regulated stress-responsive transcription factors, such as Msn2, Msn4, and Gis1, were unable to rescue the temperature-sensitive growth phenotype of the hsf1 mutant. Another class of suppressors encoded cell wall stress sensors, Wsc1, Wsc2, and Mid2, and the GDP/GTP exchange factor Rom2 that interacts with these cell wall sensors. Activation of a protein kinase, Pkc1, which is induced by these cell wall sensor proteins upon heat shock, but not activation of the Pkc1-regulated mitogen-activated protein kinase cascade, was necessary for the hsf1 suppression. Like Wsc-Pkc1 pathway mutants, hsf1 cells exhibited an osmotic remedial cell lysis phenotype at elevated temperatures. Several of the other suppressors were found to encode proteins functioning in cell wall organization. These results suggest that Hsf1 in concert with Pkc1 regulates cell wall remodeling in response to heat shock.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Imazu H, Sakurai H
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference