Reference: Zhu H and Riggs AF (1992) Yeast flavohemoglobin is an ancient protein related to globins and a reductase family. Proc Natl Acad Sci U S A 89(11):5015-9

Reference Help

Abstract

The hemoglobin of yeast is a two-domain protein with both heme and flavin prosthetic groups. The nucleotide sequences of the cDNA and genomic DNA encoding the protein from Saccharomyces cerevisiae show that introns are absent and that both domains are homologous with a flavoheme protein from Escherichia coli. The heme domains are also homologous with those of O2-binding heme proteins from several other distantly related bacteria, plants, and animals; all appear to be members of the same globin superfamily. Although the homologous hemoglobin of the bacterium Vitreoscilla sp. is a single-domain protein, several bacteria have related O2-binding heme proteins whose second domains have different structures and enzymatic activities: dihydropteridine reductase (E. coli), cytochrome c reductase (Alcaligenes eutrophus), and kinase in the O2 sensor of Rhizobium meliloti. This indicates that one evolutionary pathway of hemoglobin is that of a multipurpose domain attached to a variety of unrelated proteins to form molecules with different functions. The flavin domain of yeast hemoglobin is homologous with members of a flavoprotein family that includes ferredoxin reductase, nitric oxide synthase, and cytochrome P-450 reductase. The correspondence of yeast and E. coli flavohemoglobins indicates that the two-domain protein has been conserved intact for as long as 1.8 billion years, the estimated time of divergence of prokaryotes and eukaryotes provided that cross-species gene transfer has not occurred.

Reference Type
Journal Article
Authors
Zhu H, Riggs AF
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference