Take our Survey

Reference: McMahon SJ, et al. (2005) Polyglutamine-expanded spinocerebellar ataxia-7 protein disrupts normal SAGA and SLIK histone acetyltransferase activity. Proc Natl Acad Sci U S A 102(24):8478-82

Reference Help

Abstract


Histone acetyltransferases have been shown to participate in many essential cellular processes, particularly those associated with activation of transcription. SAGA (Spt-Ada-Gcn5 acetyltransferase) and SLIK (SAGA-like) are two highly homologous multisubunit histone acetyltransferase complexes that were originally identified in the yeast Saccharomyces cerevisiae. Here, we identify the protein Sgf73/Sca7 as a component of SAGA and SLIK, and a homologue of the human SCA7-encoded protein ataxin-7, which, in its polyglutamine expanded pathological form, is responsible for the neurodegenerative disease spinocerebellar ataxia 7 (SCA7). Our findings indicate that yeast Sca7 is necessary for the integrity and function of both SAGA and SLIK, and that the human ataxin-7 is able to compliment the loss of Sca7 in yeast. A polyglutamine-expanded version of ataxin-7 assembles a SAGA complex that is depleted of critical proteins that regulate the ability of SAGA to acetylate nucleosomes. These observations have significant implications for the function of the human Sca7 protein in disease pathogenesis.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, N.I.H., Extramural | Research Support, U.S. Gov't, P.H.S. | Comparative Study
Authors
McMahon SJ, Pray-Grant MG, Schieltz D, Yates JR 3rd, Grant PA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference