Reference: Chen Y, et al. (2005) Characterization of TRZ1, a yeast homolog of the human candidate prostate cancer susceptibility gene ELAC2 encoding tRNase Z. BMC Mol Biol 6(1):12

Reference Help

Abstract

BACKGROUND: In humans, mutation of ELAC2 is associated with an increased risk of prostate cancer. ELAC2 has been shown to have tRNase Z activity and is associated with the gamma-tubulin complex. RESULTS: In this work, we show that the yeast homolog of ELAC2, encoded by TRZ1 (tRNase Z 1), is involved genetically in RNA processing. The temperature sensitivity of a trz1 mutant can be rescued by multiple copies of REX2, which encodes a protein with RNA 3' processing activity, suggesting a role of Trz1p in RNA processing in vivo. Trz1p has two putative nucleotide triphosphate-binding motifs (P-loop) and a conserved histidine motif. The histidine motif and the putative nucleotide binding motif at the C-domain are important for Trz1p function because mutant proteins bearing changes to the critical residues in these motifs are unable to rescue deletion of TRZ1. The growth defect exhibited by trz1 yeast is not complemented by the heterologous ELAC2, suggesting that Trz1p may have additional functions in yeast. CONCLUSION: Our results provide genetic evidence that prostate cancer susceptibility gene ELAC2 may be involved in RNA processing, especially rRNA processing and mitochondrial function.

Reference Type
Journal Article
Authors
Chen Y, Beck A, Davenport C, Chen Y, Shattuck D, Tavtigian SV
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference