Take our Survey

Reference: Acar M, et al. (2005) Enhancement of cellular memory by reducing stochastic transitions. Nature 435(7039):228-32

Reference Help

Abstract


On induction of cell differentiation, distinct cell phenotypes are encoded by complex genetic networks. These networks can prevent the reversion of established phenotypes even in the presence of significant fluctuations. Here we explore the key parameters that determine the stability of cellular memory by using the yeast galactose-signalling network as a model system. This network contains multiple nested feedback loops. Of the two positive feedback loops, only the loop mediated by the cytoplasmic signal transducer Gal3p is able to generate two stable expression states with a persistent memory of previous galactose consumption states. The parallel loop mediated by the galactose transporter Gal2p only increases the expression difference between the two states. A negative feedback through the inhibitor Gal80p reduces the strength of the core positive feedback. Despite this, a constitutive increase in the Gal80p concentration tunes the system from having destabilized memory to having persistent memory. A model reveals that fluctuations are trapped more efficiently at higher Gal80p concentrations. Indeed, the rate at which single cells randomly switch back and forth between expression states was reduced. These observations provide a quantitative understanding of the stability and reversibility of cellular differentiation states.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
Acar M, Becskei A, van Oudenaarden A
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference