Take our Survey

Reference: Wen KK and Rubenstein PA (2005) Acceleration of yeast actin polymerization by yeast Arp2/3 complex does not require an Arp2/3-activating protein. J Biol Chem 280(25):24168-74

Reference Help

Abstract

The Arp2/3 complex creates filament branches leading to an enhancement in the rate of actin polymerization. Work with Arp complexes from different sources indicated that it was inactive by itself, required an activating factor such as WASP, and might exhibit a preference for ATP or ADP-Pi actin. However, with yeast actin, Pi release is almost concurrent with polymerization eliminating the presence of an ADP-Pi cap. We thus investigated the ability of yeast Arp2/3 complex (yArp2/3) to facilitate yeast actin polymerization in the presence and absence of the Arp2/3-activating factor Las17p WA. yArp2/3 significantly accelerates yeast actin, but not muscle actin, polymerization in the absence of Las17p WA. Addition of Las17p WA further enhances yeast actin polymerization by yArp2/3 and allows the complex to now assist muscle actin polymerization. This actin isoform difference is not observed with bovine Arp2/3 complex, since the N-WASP VCA fragment is required for polymerization of both actins. Observation of individual branching filaments showed that Las17p WA increased the persistence of filament branches. Compared with WT actin, V159N mutant actin, proposed to be more ATP-like in behavior, exhibited an enhanced rate of polymerization in the presence of yArp2/3 complex. yArp2/3 caused a significant rate of Pi release prior to observation of an increase in filament mass but while branched structures were present. Thus, yeast F-actin can serve as a primary yArp2/3 activating factor indicating that a newly formed yeast actin filament has a topology, unlike that of muscle actin, that is recognized specifically by yArp2/3.

Reference Type
Journal Article
Authors
Wen KK, Rubenstein PA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference