Reference: Fahy D, et al. (2005) Rapid changes in transcription and chromatin structure of ribosomal genes in yeast during growth phase transitions. Exp Cell Res 305(2):365-73

Reference Help

Abstract

Transcription of ribosomal genes is coordinated with cellular growth. Changes in transcription may be influenced by an alteration in the number of active ribosomal genes and/or a change in the transcription rate of active genes. We measured changes in rDNA transcription during growth phase transitions in the yeast Saccharomyces cerevisiae and the concomitant changes in chromatin structure of the ribosomal genes. A quantitative transcription run-on (TRO) assay was developed to monitor transcription of ribosomal genes, and rDNA chromatin was separated into active (non-nucleosomal) and inactive (nucleosomal) genes using psoralen photo-crosslinking. TRO indicates that transcription levels of ribosomal genes drop dramatically as cells enter stationary phase, but are rapidly restored when cells are diluted into fresh medium. However, changes in the proportion of active genes during these transitions, although equally rapid, represented only a small fraction of the total rDNA. We conclude that changes in rDNA chromatin structure are temporally coordinated with growth rate, but quantitatively insufficient to account for changes in transcription. These results support the model that regulation of rRNA synthesis occurs mainly by altering the transcription rate of active ribosomal genes, and changes in the number of active rDNA gene copies contribute much less to this regulation.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, N.I.H., Extramural | Research Support, U.S. Gov't, P.H.S.
Authors
Fahy D, Conconi A, Smerdon MJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference