Reference: Amoroso G, et al. (2005) The gene NCE103 (YNL036w) from Saccharomyces cerevisiae encodes a functional carbonic anhydrase and its transcription is regulated by the concentration of inorganic carbon in the medium. Mol Microbiol 56(2):549-58

Reference Help

Abstract


Summary Carbonic anhydrase (CA) catalyses the rapid interconversion between CO(2) and HCO(3) (-). Despite its wide distribution among living organisms, the presence of CA in fungi has been controversially discussed. Using mass spectrometric analysis of (18)O exchange from doubly labelled CO(2), we were able to measure CA activity in intact cells of Saccharomyces cerevisiae. Intracellular CA activity was lacking in the Deltance103 mutant, indicating that NCE103 encodes a functional CA. This was proven by overexpressing and purification of the NCE103 gene product showing a specific activity of around 6900 units per mg protein. Interestingly, the in vivo CA activity was 10-20 times higher in cells grown on low inorganic carbon (Ci; air containing 0.035% CO(2)) than in high-Ci cells (grown on 5% CO(2)). The enhanced CA activity of low-Ci cells was inducible after transferring high-Ci cells to air. Northern blot analysis revealed that that expression of NCE103 is transcriptionally regulated by low Ci which was also demonstrated by fusing the NCE103 promoter to beta-galactosidase as a reporter gene. Inactivation of NCE103 results in a high CO(2) requiring mutant indicating that a functional CA is an important prerequisite for S. cerevisiae to grow under low-Ci conditions.

Reference Type
Journal Article
Authors
Amoroso G, Morell-Avrahov L, Muller D, Klug K, Sultemeyer D
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference