Take our Survey

Reference: Hausmann A, et al. (2005) The eukaryotic P loop NTPase Nbp35: an essential component of the cytosolic and nuclear iron-sulfur protein assembly machinery. Proc Natl Acad Sci U S A 102(9):3266-71

Reference Help

Abstract

Soluble P loop NTPases represent a large protein family and are involved in diverse cellular functions. Here, we functionally characterized the first member of the Mrp/Nbp35 subbranch of this family, the essential Nbp35p of Saccharomyces cerevisiae. The protein resides in the cytosol and nucleus and carries an Fe/S cluster at its N terminus. Assembly of the Fe/S cluster requires the mitochondrial Fe/S cluster (ISC)-assembly and -export machineries. Depletion of Nbp35p strongly impairs the activity of the cytosolic Fe/S protein, isopropylmalate isomerase (Leu1p), whereas mitochondrial Fe/S enzymes are unaffected. Moreover, defects in the de novo maturation of various cytosolic and nuclear Fe/S proteins were observed in the absence of Nbp35p, demonstrating the functional involvement of Nbp35p in the biogenesis of extramitochondrial Fe/S proteins. Furthermore, Nbp35p genetically interacts with the closely similar P loop NTPase, Cfd1p, and the hydrogenase-like Nar1p, both of which were recently shown to perform a crucial function in cytosolic and nuclear Fe/S protein biogenesis. Hence, our study suggests that eukaryotic Nbp35 NTPases function in Fe/S protein maturation. The findings provide strong evidence for the existence of a highly conserved and essential machinery dedicated to assembling cytosolic and nuclear Fe/S proteins.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Hausmann A, Aguilar Netz DJ, Balk J, Pierik AJ, Muhlenhoff U, Lill R
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference