Reference: Meier S, et al. (2005) Conserved N-terminal negative charges in the Tim17 subunit of the TIM23 translocase play a critical role in the import of preproteins into mitochondria. J Biol Chem 280(9):7777-85

Reference Help

Abstract


The TIM23 complex of the mitochondrial inner membrane mediates the import of preproteins that contain positively charged targeting signals. This translocase consists of the two phylogenetically related membrane-embedded subunits Tim17 and Tim23 to which four largely hydrophilic subunits, Tim50, Tim44, Tim16, and Tim14, are attached. Whereas in vitro reconstitution experiments have suggested a pore-forming capacity of recombinant Tim23, virtually nothing is known about the properties and function of Tim17. We employed a combined genetic and biochemical approach to address the function of Tim17 in preprotein translocation. Tim17 exposes an N-terminal hydrophilic stretch into the intermembrane space. Truncation of the first 11 amino acid residues of this stretch did not affect the stability or integrity of TIM23 subunits but strongly impaired the import of preproteins. Moreover, expression of the truncated Tim17 variant led to a dominant negative effect on the mitochondrial membrane potential. By an alanine-scanning approach we identified two conserved negative charges in the N terminus of Tim17 as critical for Tim17 function. The replacement of these positions by positively charged residues results in a strong growth defect, which can be cured by reverting two conserved positive charges into aspartate residues between transmembrane domains two and three of Tim17. On the basis of these observations we propose that charged residues in Tim17 are critical for the preprotein-induced gating of the TIM23 translocase.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Meier S, Neupert W, Herrmann JM
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference