Take our Survey

Reference: Tanida I, et al. (2004) Human light chain 3/MAP1LC3B is cleaved at its carboxyl-terminal Met121 to expose Gly120 for lipidation and targeting to autophagosomal membranes. J Biol Chem 279(46):47704-10

Reference Help

Abstract

Human light chain 3/MAP1LC3B, an autophagosomal ortholog of yeast Atg8, is conjugated to phospholipid (PL) via ubiquitylation-like reactions mediated by human Atg7 and Atg3. Since human Atg4B was found to cleave the carboxyl terminus of MAP1LC3B in vitro, we hypothesized that this exposes its carboxyl-terminal Gly(120). It was recently reported, however, that when Myc-MAP1LC3B-His is expressed in HEK293 cells, its carboxyl terminus is not cleaved. (Tanida, I., Sou, Y.-s., Ezaki, J., Minematsu-Ikeguchi, N., Ueno, T., and Kominami, E. (2004) J. Biol. Chem. 279, 36268-36276). To clarify this contradiction, we sought to determine whether the carboxyl terminus of MAP1LC3B is cleaved to expose Gly(120) for further ubiquitylation-like reactions. When MAP1LC3B-3xFLAG and Myc-MAP1LC3B-His were expressed in HEK293 cells, their carboxyl termini were cleaved, whereas there was little cleavage of mutant proteins MAP1LC3B(G120A)-3xFLAG and Myc-MAP1LC3B(G120A)-His, containing Ala in place of Gly(120). An in vitro assay showed that Gly(120) is essential for carboxyl-terminal cleavage by human Atg4B as well as for formation of the intermediates Atg7-MAP1LC3B (ubiquitin-activating enzyme-substrate) and Atg3-MAP1LC3B (ubiquitin carrier protein-substrate). Recombinant MAP1LC3B-PL was fractionated into the 100,000 x g pellet in a manner similar to that shown for endogenous MAP1LC3B-PL. RNA interference of MAP1LC3B mRNA resulted in a decrease in both endogenous MAP1LC3B-PL and MAP1LC3B. These results indicate that the carboxyl terminus of MAP1LC3B is cleaved to expose Gly(120) for further ubiquitylation-like reactions.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Tanida I, Ueno T, Kominami E
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference