Take our Survey

Reference: Seo JA, et al. (2004) The gprA and gprB genes encode putative G protein-coupled receptors required for self-fertilization in Aspergillus nidulans. Mol Microbiol 53(6):1611-23

Reference Help

Abstract

The filamentous fungus Aspergillus nidulans possesses both asexual and sexual reproductive cycles. Sexual fruiting bodies (cleistothecia) can be formed in both homothallic (self) and heterothallic (outcross) conditions. In this study, we characterized two genes, gprA and gprB, that are predicted to encode putative G protein-coupled receptors (GPCRs) similar to fungal pheromone receptors. Deletion (Delta) of gprA or gprB resulted in the production of a few small cleistothecia carrying a reduced number of ascospores, whereas DeltagprADeltagprB eliminated fruiting body formation in homothallic conditions. However, nullifying gprA and/or gprB did not affect vegetative growth, asexual sporulation, Hulle cell formation or even cleistothecia formation in outcross, indicating that GprA and GprB are specifically required for self-fertilization. The gprA and gprB genes encode two transcripts and, for both genes, larger transcripts are detectable during vegetative growth and asexual development whereas smaller transcripts accumulate during sexual development. Upregulation of nsdD encoding a key sexual developmental activator resulted in the production of barren cleistothecia in the DeltagprADeltagprB mutant, suggesting that NsdD can partially rescue the developmental defects caused by deletion of GPCRs and that GprA/B-mediated signalling may activate other genes necessary for maturation of cleistothecia and ascosporogenesis. Deletion of gprA and/or gprB suppressed growth defects caused by DeltagprD, implying that GprA/B function downstream of GprD-mediated negative control of sexual development.

Reference Type
Journal Article
Authors
Seo JA, Han KH, Yu JH
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference