Reference: Verdone L, et al. (2004) Lsm proteins promote regeneration of pre-mRNA splicing activity. Curr Biol 14(16):1487-91

Reference Help

Abstract


Lsm proteins are ubiquitous, multifunctional proteins that affect the processing of most RNAs in eukaryotic cells, but their function is unknown. A complex of seven Lsm proteins, Lsm2-8, associates with the U6 small nuclear RNA (snRNA) that is a component of spliceosome complexes in which pre-mRNA splicing occurs. Spliceosomes contain five snRNAs, U1, U2, U4, U5, and U6, that are packaged as ribonucleoprotein particles (snRNPs). U4 and U6 snRNAs contain extensive sequence complementarity and interact to form U4/U6 di-snRNPs. U4/U6 di-snRNPs associate with U5 snRNPs to form U4/U6.U5 tri-snRNPs prior to spliceosome assembly. Within spliceosomes, disruption of base-paired U4/U6 heterodimer allows U6 snRNA to form part of the catalytic center. Following completion of the splicing reaction, snRNPs must be recycled for subsequent rounds of splicing, although little is known about this process. Here we present evidence that regeneration of splicing activity in vitro is dependent on Lsm proteins. RNP reconstitution experiments with exogenous U6 RNA show that Lsm proteins promote the formation of U6-containing complexes and suggest that Lsm proteins have a chaperone-like function, supporting the assembly or remodeling of RNP complexes involved in splicing. Such a function could explain the involvement of Lsm proteins in a wide variety of RNA processing pathways.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S. | Comparative Study
Authors
Verdone L, Galardi S, Page D, Beggs JD
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference