Reference: Muto Y, et al. (2004) The structure and biochemical properties of the human spliceosomal protein U1C. J Mol Biol 341(1):185-98

Reference Help

Abstract


The spliceosomal U1C protein is critical to the initiation and regulation of precursor messenger RNA (pre-mRNA) splicing, as part of the U1 small nuclear ribonucleoprotein particle (snRNP). We have produced full-length and 61 residue constructs of human U1C in soluble form in Escherichia coli. Atomic absorption spectroscopy and mass spectrometry show that both constructs contain one Zn atom and are monomeric. Gelmobility-shift assays showed that one molecule of recombinant U1C, either full-length or 61 residue construct, can be incorporated into the U1 snRNP core domain in the presence of U1 70k. This result is in perfect agreement with the previous experiment with U1C isolated from the HeLa U1 snRNP showing that the recombinant U1C is functionally active. We have determined the solution structure of the N-terminal 61 residue construct of U1C by NMR. A Cys(2)His(2)-type zinc finger, distinct from the TFIIIA-type, is extended at its C terminus by two additional helices. The two Zn-coordinating histidine residues are separated by a five residue loop. The conserved basic residues in the first two helices and the intervening loop may be involved in RNA binding. The opposite beta-sheet face with two surface-exposed Tyr residues may be involved in protein contacts. Both the full-length and 61 residue constructs of human U1C fail to bind RNA containing the 5' splice site sequence, in contrast to what has been reported for the Saccharomyces cerevisiae orthologue.

Reference Type
Journal Article
Authors
Muto Y, Pomeranz Krummel D, Oubridge C, Hernandez H, Robinson CV, Neuhaus D, Nagai K
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference