Take our Survey

Reference: Viladevall L, et al. (2004) Characterization of the calcium-mediated response to alkaline stress in Saccharomyces cerevisiae. J Biol Chem 279(42):43614-24

Reference Help

Abstract


Exposure of the yeast Saccharomyces cerevisiae to alkaline stress resulted in adaptive changes that involved remodeling the gene expression. Recent evidence suggested that the calcium-activated protein phosphatase calcineurin could play a role in alkaline stress signaling. By using an aequorin luminescence reporter, we showed that alkaline stress resulted in a sharp and transient rise in cytoplasmic calcium. This increase was largely abolished by addition of EGTA to the medium or in cells lacking Mid1 or Cch1, components of the high affinity cell membrane calcium channel. Under these circumstances, the alkaline response of different calcineurin-sensitive transcriptional promoters was also blocked. Therefore, exposure to alkali resulted in entry of calcium from the external medium, and this triggered a calcineurin-mediated response. The involvement of calcineurin and Crz1/Tcn1, the transcription factor activated by the phosphatase, in the transcriptional response triggered by alkalinization has been globally assessed by DNA microarray analysis in a time course experiment using calcineurin-deficient (cnb1) and crz1 mutants. We found that exposure to pH 8.0 increased at least 2-fold the mRNA levels of 266 genes. In many cases (60%) the response was rather early (peak after 10 min). The transcriptional response of 27 induced genes (10%) was reduced or fully abolished in cnb1 cells. In general, the response of crz1 mutants was similar to that of calcineurin-deficient cells. By analysis of a systematic deletion library, we found 48 genes whose mutation resulted in increased sensitivity to the calcineurin inhibitor FK506. Twenty of these mutations (42%) also provoked alkaline pH sensitivity. In conclusion, our results demonstrated that calcium signaling and calcineurin activation represented a significant component of the yeast response to environmental alkalinization.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Viladevall L, Serrano R, Ruiz A, Domenech G, Giraldo J, Barcelo A, Arino J
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference