Reference: Pourshafie M, et al. (2004) Cloning of S-adenosyl-L-methionine:C-24-Delta-sterol-methyltransferase (ERG6) from Leishmania donovani and characterization of mRNAs in wild-type and amphotericin B-Resistant promastigotes. Antimicrob Agents Chemother 48(7):2409-14

Reference Help

Abstract

The 24-alkylated sterols have been shown previously to be absent in membranes of amphotericin B (AmB)-resistant Leishmania donovani promastigotes, suggesting that the S- adenosyl-l-methionine:C-24-Delta-sterol-methyltransferase (SCMT or ERG6) was not functional or not expressed in AmB-resistant (AmB-R) parasites. From an L. donovani wild-type clone, we cloned two cDNAs with an identical open reading frame encoding a putative SCMT, the enzyme responsible for a first sterol methylation at the C-24 position. The two cDNAs differed by their 3'-untranslated region (3'-UTR) and 5'-UTR sequences. One transcript (A) had a normal structure with a spliced leader and was highly expressed in normal cells but absent in AmB-R cells. The other (B), which did not possess the spliced leader sequence, was weakly expressed in normal cells but strongly expressed in AmB-R cells. As a functional test, ERG6 null mutant Saccharomyces cerevisiae yeasts were transformed using the pYES2.1 TOPO TA expression vector containing the candidate SCMT1/ERG6 coding sequence cloned from L. donovani. The transformed yeasts exhibited C-24 alkylated sterol expression, mainly ergosterol, within their membranes, proving that the isolated cDNA encodes on a SCMT responsible for sterol methylation. In AmB-R L. donovani promastigotes, the absence of the normal transcript (A) and the expression of an abnormal species (B) devoid of a spliced leader could explain the absence of sterol methylation in these cells. Further studies using a homologous system will allow us to draw conclusions about the relationship between SCMT expression and AmB resistance in Leishmania.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Pourshafie M, Morand S, Virion A, Rakotomanga M, Dupuy C, Loiseau PM
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference