Reference: Wyce A, et al. (2004) H2B ubiquitylation and de-ubiquitylation in gene activation. Novartis Found Symp 259:63-73; discussion 73-7, 163-9

Reference Help

Abstract


Previous models for the role of histone modifications suggest that adding and removing modifications, such as acetylation/deacetylation in gene regulation, are functionally antagonistic. We have investigated a transcriptional role of H2B C-terminal ubiquitylation and de-ubiquitylation in Saccharomyces cerevisiae. H2B ubiquitylation is required for optimal transcription of SUC2 and GAL1 genes. The ubiquitin hydrolase Ubp8 is a stable component of SAGA but not ADA complexes, and is not required for overall integrity of SAGA. Biochemical and genetic evidence indicates that Ubp8 targets H2B for deubiquitylation. The dynamic balance of H2B ubiquitylation/deubiquitylation is important for GAL1 transcription since either substitution of the ubiquitylation site in H2B (Lys123), or loss of Ubp8, lowers GAL1 expression. Further, this balance of ubiquitylation appears to set the balance of histone H3 methylation at Lys4 relative to Lys36. Thus, unlike acetylation/deacetylation whose functions are mutually opposing, both ubiquitylation and de-ubiquitylation are required for gene activation. These results suggest that ubiquitylation of histones has a unique role among histone modifications, possibly to orchestrate an ordered pathway of chromatin alterations.

Reference Type
Journal Article | Review | Review, Tutorial
Authors
Wyce A, Henry KW, Berger SL
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference