Reference: Izumi M, et al. (2004) Localization of human Mcm10 is spatially and temporally regulated during the S phase. J Biol Chem 279(31):32569-77

Reference Help

Abstract

Mcm10 (Dna43) is an essential protein for the initiation of DNA replication in Saccharomyces cerevisiae. Recently, we identified a human Mcm10 homolog and found that it is regulated by proteolysis and phosphorylation in a cell cycle-dependent manner and that it binds chromatin exclusively during the S phase of the cell cycle. However, the precise roles that Mcm10 plays are still unknown. To study the localization dynamics of human Mcm10, we established HeLa cell lines expressing green fluorescent protein (GFP)-tagged Mcm10. From early to mid-S phase, GFP-Mcm10 appeared in discrete nuclear foci. In early S phase, several hundred foci appeared throughout the nucleus. In mid-S phase, the foci appeared at the nuclear periphery and nucleolar regions. In the late S and G phases, GFP-Mcm10 was localized to nucleoli. Although (2)the distributions of GFP-Mcm10 during the S phase resembled those of replication foci, GFP-Mcm10 foci did not colocalize with sites of DNA synthesis in most cases. Furthermore, the transition of GFP-Mcm10 distribution patterns preceded changes in replication foci patterns or proliferating cell nuclear antigen foci patterns by 30-60 min. These results suggest that human Mcm10 is temporarily recruited to the replication sites 30-60 min before they replicate and that it dissociates from chromatin after the activation of the prereplication complex.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Izumi M, Yatagai F, Hanaoka F
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference