Reference: Serre L, et al. (2004) Crystal structure of the oxidized form of the periplasmic mercury-binding protein MerP from Ralstonia metallidurans CH34. J Mol Biol 339(1):161-71

Reference Help

Abstract


In Ralstonia metallidurans CH34, the gene merP encodes for a periplasmic mercury-binding protein which is capable of binding one mercury atom. The metal-binding site of MerP consists of the highly conserved sequence GMTCXXC found in the family that includes metallochaperones and metal-transporting ATPases. We purified MerP from R.metallidurans CH34 and solved its crystal structure under the oxidized form at 2.0A resolution. Superposition with structures of other metal-binding proteins shows that the global structure of R.metallidurans CH34 oxidized MerP follows the general topology of the whole family. The largest differences are observed with the NMR structure of oxidized Shigella flexneri MerP. Detailed analysis of the metal-binding site suggests a direct role for Y66 in stabilizing the thiolate group of C17 during the mercury-binding reaction. The metal-binding site of oxidized MerP is also similar to the metal-binding sites of oxidized copper chaperone for superoxide dismutase and Atx1, two copper-binding proteins from Saccharomyces cerevisiae. Finally, the packing of the MerP crystals suggests that F38, a well-conserved residue in the MerP family may be important in mercury binding and transfer. We propose a possible mechanism of mercury transfer between two CXXC motifs based on a transient bi-coordinated mercury intermediate.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Serre L, Rossy E, Pebay-Peyroula E, Cohen-Addad C, Coves J
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference