Take our Survey

Reference: Nelson GM, et al. (2004) The heat shock protein 70 cochaperone hip enhances functional maturation of glucocorticoid receptor. Mol Endocrinol 18(7):1620-30

Reference Help

Abstract

Multiple molecular chaperones interact with steroid receptors to promote functional maturation and stability of receptor complexes. The heat shock protein (Hsp)70 cochaperone Hip has been identified in conjunction with Hsp70, Hsp90, and the Hsp70/Hsp90 cochaperone Hop/Sti1p in receptor complexes during an intermediate stage of receptor assembly, but a functional requirement for Hip in the receptor assembly process has not been established. Because the budding yeast Saccharomyces cerevisiae contains orthologs for most of the receptor-associated chaperones yet lacks an orthologous Hip gene, we exploited the well-established yeast model for steroid receptor function to ask whether Hip can alter steroid receptor function in vivo. Introducing human Hip into yeast enhances hormone-dependent activation of a reporter gene by glucocorticoid receptor (GR). Because Hip does not similarly enhance signaling by mineralocorticoid, progesterone, or estrogen receptors, a general effect on transcription can be excluded. Instead, Hip promotes functional maturation of GR without increasing steady-state levels of GR protein. Unexpectedly, Hip binding to Hsp70 is not critical for boosting GR responsiveness to hormone. In conclusion, Hip functions by a previously unrecognized mechanism to promote the efficiency of GR maturation in cells.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Nelson GM, Prapapanich V, Carrigan PE, Roberts PJ, Riggs DL, Smith DF
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference