Reference: Katis VL, et al. (2004) Maintenance of cohesin at centromeres after meiosis I in budding yeast requires a kinetochore-associated protein related to MEI-S332. Curr Biol 14(7):560-72

Reference Help

Abstract


BACKGROUND: The halving of chromosome number that occurs during meiosis depends on three factors. First, homologs must pair and recombine. Second, sister centromeres must attach to microtubules that emanate from the same spindle pole, which ensures that homologous maternal and paternal pairs can be pulled in opposite directions (called homolog biorientation). Third, cohesion between sister centromeres must persist after the first meiotic division to enable their biorientation at the second. RESULTS: A screen performed in fission yeast to identify meiotic chromosome missegregation mutants has identified a conserved protein called Sgo1 that is required to maintain sister chromatid cohesion after the first meiotic division. We describe here an orthologous protein in the budding yeast S. cerevisiae (Sc), which has not only meiotic but also mitotic chromosome segregation functions. Deletion of Sc SGO1 not only causes frequent homolog nondisjunction at meiosis I but also random segregation of sister centromeres at meiosis II. Meiotic cohesion fails to persist at centromeres after the first meiotic division, and sister centromeres frequently separate precociously. Sgo1 is a kinetochore-associated protein whose abundance declines at anaphase I but, nevertheless, persists on chromatin until anaphase II. CONCLUSIONS: The finding that Sgo1 is localized to the centromere at the time of the first division suggests that it may play a direct role in preventing the removal of centromeric cohesin. The similarity in sequence composition, chromosomal location, and mutant phenotypes of sgo1 mutants in two distant yeasts with that of MEI-S332 in Drosophila suggests that these proteins define an orthologous family conserved in most eukaryotic lineages.

Reference Type
Journal Article
Authors
Katis VL, Galova M, Rabitsch KP, Gregan J, Nasmyth K
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference