Take our Survey

Reference: Saba JD and Hla T (2004) Point-counterpoint of sphingosine 1-phosphate metabolism. Circ Res 94(6):724-34

Reference Help

Abstract

Sphingosine 1-phosphate (S1P), an evolutionarily conserved bioactive lipid mediator, is now recognized as a potent modulator of cell regulation. In vertebrates, S1P interacts with cell surface G protein-coupled receptors of the EDG family and induces profound effects in a variety of organ systems. Indeed, an S1P receptor agonist is undergoing clinical trials to combat immune-mediated transplant rejection. Recent information on S1P receptor biology suggests potential utility in the control of cardiovascular processes, including angiogenesis, vascular permeability, arteriogenesis, and vasospasm. However, studies from diverse invertebrates, such as yeast, Dictyostelium, Drosophila, and Caenorhabditis elegans have shown that S1P is involved in important regulatory functions in the apparent absence of EDG S1P receptor homologues. Metabolic pathways of S1P synthesis, degradation, and release have recently been described at the molecular level. Genetic and biochemical studies of these enzymes have illuminated the importance of S1P signaling systems both inside and outside of cells. The revelation of receptor-dependent pathways, as well as novel metabolic/intracellular pathways has provided new biological insights and may ultimately pave the way for the development of novel therapeutic approaches for cardiovascular diseases.

Reference Type
Journal Article | Review | Research Support, U.S. Gov't, P.H.S.
Authors
Saba JD, Hla T
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference