Reference: Jessen WJ, et al. (2004) Mapping chromatin structure in vivo using DNA methyltransferases. Methods 33(1):68-80

Reference Help

Abstract

Cytosine-5 DNA methyltransferases (C5 DMTases) are effective reagents for analyzing chromatin and footprinting DNA-bound factors in vivo. Cytosine methylation in accessible regions is assayed positively by the PCR-based technique of bisulfite sequencing. In this article, we outline two complementary uses for the DNA methyltransferase CviPI (M.CviPI, GC specificity) in probing chromatin organization. First, we describe the use of the naturally occurring, free enzyme as a diffusible probe to map changes in nucleosome structure and to footprint factor interactions at cis-regulatory sequences. In a second application, termed targeted gene methylation (TAGM), the DMTase is targeted via in-frame fusion to a DNA-binding factor. The rapid accumulation of DNA methylation enables highly sensitive detection of factor binding. Both strategies can be applied with any C5 DMTase, such as M.SssI, which also possesses a short-recognition specificity (CG). A description of methods for constructing C5 DMTase-expressing strains of Saccharomyces cerevisiae and analyzing chromatin regions is provided. We also include comprehensive protocols for the isolation and bisulfite treatment of genomic DNA as well as the subsequent bisulfite sequencing steps. Data demonstrating the efficacy of both DMTase probing techniques, theoretical considerations, and experimental analyses are presented at GAL1 and PHO5.

Reference Type
Journal Article
Authors
Jessen WJ, Dhasarathy A, Hoose SA, Carvin CD, Risinger AL, Kladde MP
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference