Reference: Workman P (2004) Combinatorial attack on multistep oncogenesis by inhibiting the Hsp90 molecular chaperone. Cancer Lett 206(2):149-57

Reference Help

Abstract

The molecular chaperone Hsp90 is not only of major current interest in fundamental biological research but also recognised as an exciting new target for the treatment of cancer and other diseases. In addition to playing an important role in response to proteotoxic heat shock and others stresses, Hsp90 is also critical for maintaining normal cellular homeostasis. Hsp90 is responsible for ensuring the conformational stability, shape and function of a selected range of key proteins, including many kinases and transcription factors. Furthermore, recent studies show that Hsp90 plays a key role in development and evolution. Hsp90 is overexpressed in cancer cells and is thought to be involved in dealing with the cellular stress associated with malignancy, as well as being essential for a range of key oncogenic proteins, including ErbB2, Raf-1, Akt/PKB, mutant p53 and many others. A major attraction of Hsp90 inhibitors is their potential to inhibit a range of 'mission critical' cancer pathways, thereby blocking all of the 'hallmark traits' of malignancy and exhibiting broad-spectrum antitumour activity. The first-in-class Hsp90 inhibitor 17AAG has entered clinical trials with promising early results and a range of other agents is under investigation and preclinical development. This article reviews the current status and future prospects for the exploitation of Hsp90 as a new molecular target for cancer treatment.

Reference Type
Journal Article | Review
Authors
Workman P
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference