Reference: Xiao Z, et al. (2004) C-terminal domain of the membrane copper transporter Ctr1 from Saccharomyces cerevisiae binds four Cu(I) ions as a cuprous-thiolate polynuclear cluster: sub-femtomolar Cu(I) affinity of three proteins involved in copper trafficking. J Am Chem Soc 126(10):3081-90

Reference Help

Abstract

The cytosolic C-terminal domain of the membrane copper transporter Ctr1 from the yeast Saccharomyces cerevisiae, Ctr1c, was expressed in E. coli as an oxygen-sensitive soluble protein with no significant secondary structure. Visible-UV spectroscopy demonstrated that Ctr1c bound four Cu(I) ions, structurally identified as a Cu(I)(4)(micro-S-Cys)(6) cluster by Xray absorption spectroscopy. This was the only metalated form detected by electrospray ionization mass spectrometry. An average dissociation constant K(D) = (K(1)K(2)K(3)K(4))(1/4) = 10(-)(19) for binding of Cu(I) to Ctr1c was estimated via competition with the ligand bathocuproine disulfonate bcs (beta(2) = 10(19.8)). Equivalent experiments for the yeast chaperone Atx1 and an N-terminal domain of the yeast Golgi pump Ccc2, which both bind a single Cu(I) ion, provided similar K(D) values. The estimates of K(D) were supported by independent estimates of the equilibrium constants K(ex) for exchange of Cu(I) between pairs of these three proteins. It is apparent that, in vitro, the three proteins buffer "free" Cu(I) concentrations in a narrow range around 10(-)(19) M. The results provide quantitative support for the proposals that, in yeast, (a) "free" copper concentrations are very low in the cytosol and (b) the Cu(I) trafficking gradient is shallow along the putative Ctrlc --> Atx1 --> Ccc2n metabolic pathway. In addition, both Ctr1c and its copper-responsive transcription factor Mac1 contain similar clusters which may be important in signaling copper status in yeast.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
Xiao Z, Loughlin F, George GN, Howlett GJ, Wedd AG
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference