Reference: White SA, et al. (2004) Internal loop mutations in the ribosomal protein L30 binding site of the yeast L30 RNA transcript. RNA 10(3):369-77

Reference Help

Abstract

Yeast ribosomal protein L30 binds to an asymmetric, purine-rich internal loop in its transcript to repress its own splicing and translation. The protein-bound form of the stem-internal loop-stem RNA is an example of a kink-turn RNA structural motif. Analysis of kink-turn motifs reveals that in (2 + 5) internal loops, the identities of five nucleotides are very important, while the remaining two may be varied. Previous SELEX experiments on the L30 binding site showed an identical pattern of sequence variation with five nucleotides highly conserved and two positions variable. In this work, internal loop residues were mutated and tested for protein binding in vitro and in vivo. The two sheared G-A pairs, which cannot be mutated without severely weakening L30 binding, make sequence specific contacts with other portions of the RNA and L30 protein. In contrast, the lone nucleotide that protrudes into the protein and an unpaired adenosine make no sequence-specific contacts, and may be mutated without compromising L30 binding. The internal loop allows the formation of a very tight bend that brings the two stems together with cross-strand stacking of two adenines and an interhelical ribose contact. Replacement of a ribonucleotide with a deoxynucleotide adjacent to the internal loop weakens protein binding significantly. In the absence of L30, some of the internal loop residues involved in the formation of the kink-turn motif are protected from chemical modification, indicating that some elements of kink-turn structure may form in the free L30 RNA.

Reference Type
Journal Article | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
White SA, Hoeger M, Schweppe JJ, Shillingford A, Shipilov V, Zarutskie J
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference