Reference: Steuer S, et al. (2004) Chimeras of the homing endonuclease PI-SceI and the homologous Candida tropicalis intein: a study to explore the possibility of exchanging DNA-binding modules to obtain highly specific endonucleases with altered specificity. Chembiochem 5(2):206-13

Reference Help

Abstract

Homing endonucleases are extremely specific endodeoxyribonucleases. In vivo, these enzymes confer mobility on their genes by inducing a very specific double-strand cut in cognate alleles that lack the cooling sequence for the homing endonuclease; the cellular repair of the double-strand break with the endonuclease-containing allele as a template leads to integration of the endonuclease gene, completing the homing process. As a result of their extreme sequence specificity, homing endonucleases are promising tools for genome engineering. For this purpose, it is desirable to design enzymes with defined new specificities. To analyse which DNA-binding elements are potential candidates for use in the design of enzymes with modified or even new specificity, we produced several chimeric proteins derived from the Saccharomyces cerevisiae VMA1 intein (PI-SceI) and the related Candida tropicalis VMA1 intein. Although the mature Candida intein is devoid of endonucleolytic activity, the exchange of two DNA-binding modules of PI-SceI with the homologous elements from the Candida intein results in an active endonuclease. The low sequence homology in these modules indicates that different protein-DNA contacts are responsible for the recognition of related DNA sequences. This flexibility in DNA recognition should, in principle, allow endonucleases to be produced with new specificities useful for genome engineering.

Reference Type
Journal Article
Authors
Steuer S, Pingoud V, Pingoud A, Wende W
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference