Reference: Ramos PC, et al. (2004) Role of C-terminal extensions of subunits beta2 and beta7 in assembly and activity of eukaryotic proteasomes. J Biol Chem 279(14):14323-30

Reference Help

Abstract

A close inspection of the crystal structure of the yeast 20 S proteasome revealed that a prominent connection between the two beta-rings is mediated by the subunit beta7/Pre4. Its C-terminal extension intercalates between the beta1/Pre3 and beta2/Pup1 subunits on the opposite ring. We show that the interactions promoted by the beta7/Pre4 tail are important to facilitate the formation of 20 S particles from two half-proteasome precursor complexes and/or to stabilize mature 20 S proteasomes. The deletion of 19 residues from the beta7/Pre4 C terminus leads to an accumulation of half-proteasome precursor complexes containing the maturation factor Ump1. The C-terminal extension of beta7/Pre4, which forms several hydrogen bonds with beta1/Pre3, is in addition required for the post-acidic activity mediated by the latter subunit. Deletion of the C-terminal tail of beta7/Pre4 results in an inhibition of beta1/Pre3 propeptide processing and abrogation of post-acidic activity. Our data obtained with yeast strains that expressed the mature form of Pre3 lacking its propeptide suggest that interactions between the Pre4 C terminus and Pre3 stabilize a conformation of its active site, which is essential for post-acidic activity. Deletion of the C-terminal extension of beta2/Pup1, which wraps around beta3/Pup3 within the same beta-ring, is lethal, indicating that this extension serves an essential function in proteasome assembly or stability.

Reference Type
Journal Article
Authors
Ramos PC, Marques AJ, London MK, Dohmen RJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference