Reference: Chae HJ, et al. (2003) Evolutionarily conserved cytoprotection provided by Bax Inhibitor-1 homologs from animals, plants, and yeast. Gene 323:101-13

Reference Help

Abstract

Programmed cell death (PCD) plays important roles in the development and physiology of both animals and plants, but it is unclear whether similar mechanisms are employed. Bax Inhibitor-1 (BI-1) is an intracellular multi-membrane-spanning protein and cell death inhibitor, originally identified by a function-based screen for mammalian cDNAs capable of suppressing cell death in yeast engineered to ectopically express the pro-apoptotic protein Bax. Using this yeast assay, we screened expression libraries for cDNAs from the plant, Lycopersicon esculentum (tomato), and the invertebrate animal Drosophila melanogaster (fruit fly), identifying close homologs of BI-1 as Bax-suppressors. We studied the fly and tomato homologs of BI-1, as well as BI-1 homologs identified in Arabidopsis thaliana, Oryza sativa (rice), and Saccharomyces cerevisiae (budding yeast). All eukaryotic homologs of BI-1 blocked Bax-induced cell death when expressed in yeast. Eukaryotic BI-1 homologs also partially rescued yeast from cell death induced by oxidative stress (H(2)O(2)) and heat shock. Deletion of a C-terminal domain from BI-1 homologs abrogated their cytoprotective function in yeast, demonstrating conserved structure-function relations among these proteins. Expression of tomato BI-1 by agroinfiltration of intact plant leaves provided protection from damage induced by heat-shock and cold-shock stress. Altogether, these findings indicate that BI-1 homologs exist in multiple eukaryotic species, providing cytoprotection against diverse stimuli, thus implying that BI-1 regulates evolutionary conserved mechanisms of stress resistance that are germane to both plants and animals.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Chae HJ, Ke N, Kim HR, Chen S, Godzik A, Dickman M, Reed JC
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference