Reference: Fisk HA, et al. (2003) Human Mps1 protein kinase is required for centrosome duplication and normal mitotic progression. Proc Natl Acad Sci U S A 100(25):14875-80

Reference Help

Abstract

The mitotic spindle is essential for the maintenance of genetic stability, and in budding yeast its assembly and function depend on the Mps1 protein kinase. Mps1p is required for centrosome duplication and the spindle checkpoint. Several recent reports demonstrate that vertebrate Mps1 proteins regulate the spindle checkpoint, but reports conflict regarding their role in centrosome duplication. Here we provide multiple lines of evidence that the human Mps1 protein (hMps1) is required for centrosome duplication. A recently described rabbit polyclonal antibody against hMps1 specifically recognizes centrosomes in a variety of human cell types. Overexpression of a dominant-negative version of hMps1 (hMps1KD) can prevent centrosome duplication in a variety of cell types, and active hMps1 accelerates centrosome reduplication in U2OS cells. Finally, we demonstrate that disruption of hMps1 function with pools of hMps1-specific small interfering RNAs causes a pleiotropic phenotype resulting from the combination of severe mitotic abnormalities and failures in centrosome duplication. This approach demonstrates that hMps1 is required for centrosome duplication and for the normal progression of mitosis, and suggests that the threshold level of hMps1 function required for centrosome duplication is lower than that required for hMps1 mitotic functions.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Fisk HA, Mattison CP, Winey M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference