Take our Survey

Reference: Hahn JS and Thiele DJ (2004) Activation of the Saccharomyces cerevisiae heat shock transcription factor under glucose starvation conditions by Snf1 protein kinase. J Biol Chem 279(7):5169-76

Reference Help

Abstract


Heat shock transcription factor (HSF) is an evolutionarily conserved protein that mediates eukaryotic transcriptional responses to stress. Although the mammalian stress-responsive HSF1 isoform is activated in response to a wide array of seemingly unrelated stresses, including heat shock, pharmacological agents, infection and inflammation, little is known about the precise mechanisms or pathways by which this factor is activated by many stressors. The baker's yeast Saccharomyces cerevisiae encodes a single HSF protein that responds to heat stress and glucose starvation and provides a simple model system to investigate how a single HSF is activated by multiple stresses. Although induction of the HSF target gene CUP1 by glucose starvation is dependent on the Snf1 kinase, HSF-dependent heat shock induction of CUP1 is Snf1-independent. Approximately 165 in vivo targets for HSF have been identified in S. cerevisiae using chromatin immunoprecipitation combined with DNA microarrays. Interestingly, approximately 30% of the HSF direct target genes are also induced by the diauxic shift, in which glucose levels begin to be depleted. We demonstrate that HSF and Snf1 kinase interact in vivo and that HSF is a direct substrate for phosphorylation by Snf1 kinase in vitro. Furthermore, glucose starvation-dependent, but not heat shock-dependent HSF phosphorylation, and enhanced chromosomal HSF DNA binding to low affinity target promoters such as SSA3 and HSP30, occurred in a Snf1-dependent manner. Consistent with a more global role for HSF and Snf1 in activating gene expression in response to changes in glucose availability, expression of a subset of HSF targets by glucose starvation was dependent on Snf1 and the HSF carboxyl-terminal activation domain.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Hahn JS, Thiele DJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference