Take our Survey

Reference: Shearer AG and Hampton RY (2004) Structural control of endoplasmic reticulum-associated degradation: effect of chemical chaperones on 3-hydroxy-3-methylglutaryl-CoA reductase. J Biol Chem 279(1):188-96

Reference Help

Abstract

The endoplasmic reticulum (ER) quality control pathway destroys misfolded and unassembled proteins in the ER. Most substrates of this ER-associated degradation (ERAD) pathway are constitutively targeted for destruction through recognition of poorly understood structural hallmarks of misfolding. However, the normal yeast ER membrane protein 3-hydroxy-3-methylglutaryl-CoA reductase (Hmg2p) undergoes ERAD that is physiologically regulated by sterol pathway signals. We have proposed that Hmg2p ERAD occurs by a regulated transition to an ERAD quality control substrate. Consistent with this, we had previously shown that Hmg2p is strongly stabilized by chemical chaperones such as glycerol, which stabilize misfolded proteins. To understand the features of Hmg2p that permit regulated ERAD, we have thoroughly characterized the effects of chemical chaperones on Hmg2p. These agents caused a reversible, immediate, direct change in Hmg2p degradation consistent with an effect on Hmg2p structure. We devised an in vitro limited proteolysis assay of Hmg2p in its native membranes. In vitro, chemical chaperones caused a dramatic, rapid change in Hmg2p structure to a less accessible form. As in the living cell, the in vitro action of chemical chaperones was highly specific for Hmg2p and completely reversible. To evaluate the physiological relevance of this model behavior, we used the limited proteolysis assay to examine the effects of changing in vivo degradation signals on Hmg2p structure. We found that changes similar to those observed with chemical chaperones were brought about by alteration of natural degradation signal. Thus, Hmg2p can undergo significant, reversible structural changes that are relevant to the physiological control of Hmg2p ERAD. These findings support the idea that Hmg2p regulation is brought about by regulated alteration of folding state. Considering the ubiquitous nature of quality control pathways in biology, it may be that this strategy of regulation is widespread.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Shearer AG, Hampton RY
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference