Take our Survey

Reference: Hansen LJ, et al. (1992) Ty3 GAG3 and POL3 genes encode the components of intracellular particles. J Virol 66(3):1414-24

Reference Help

Abstract


Ty3 is a Saccharomyces cerevisiae retrotransposon that integrates near the transcription initiation sites of polymerase III-transcribed genes. It is distinct from the copialike Ty1 and Ty2 retrotransposons of S. cerevisiae in both the sequences of encoded proteins and gene order. It is a member of the gypsylike family of retrotransposons which resemble animal retroviruses. This study was undertaken to investigate the nucleocapsid particle of a transpositionally active gypsylike retrotransposon. Characterization of extracts from cells in which Ty3 expression was induced showed the presence of Ty3 nucleoprotein complexes, or viruslike particles, that migrated on linear sucrose gradients with a size of 156S. These particles are composed of Ty3 RNA, full-length, linear DNA, and proteins. In this study, antibodies raised against peptides predicted from the Ty3 sequence were used to identify Ty3-encoded proteins. These include the capsid (26 kDa), nucleocapsid (9 kDa), and reverse transcriptase (55 kDa) proteins. Ty3 integrase proteins of 61 and 58 kDa were identified previously (L. J. Hansen and S. B. Sandmeyer, J. Virol. 64:2599-2607, 1990). Reverse transcriptase activity associated with the particles was measured by using exogenous and endogenous primer-templates. Immunofluorescence studies of cells overexpressing Ty3 revealed cytoplasmic clusters of immunoreactive proteins. Transmission electron microscopy showed that Ty3 viruslike particles are about 50 nm in diameter. Thus, despite the unusual position specificity of Ty3 upstream of tRNA-coding regions, aspects of the Ty3 life cycle are fundamentally similar to those of retroviruses.

Reference Type
Journal Article
Authors
Hansen LJ, Chalker DL, Orlinsky KJ, Sandmeyer SB
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference