Take our Survey

Reference: Gusarova V, et al. (2003) Apolipoprotein B100 exit from the endoplasmic reticulum (ER) is COPII-dependent, and its lipidation to very low density lipoprotein occurs post-ER. J Biol Chem 278(48):48051-8

Reference Help

Abstract


Hepatic apolipoprotein B100 (apoB100) associates with lipids to form dense lipoprotein particles in the endoplasmic reticulum (ER) and is further lipidated to very low density lipoproteins (VLDL). Because the VLDL diameter can exceed 200 nm, classical ER-derived vesicles may be unable to accommodate VLDLs. Using hepatic membranes and cytosol to reconstitute ER budding, apoB100-containing vesicles sedimented distinct from those harboring more typical cargo but contained Sec23. Moreover, ER exit of apoB was inhibited by dominant-negative Sar1. Budding required Sar1 regardless of whether oleic acid (OA) was added to stimulate apoB lipidation; therefore, either large apoB100-lipoproteins reside in secretory vesicles, or full lipidation occurs post-ER. Using membranes from cells incubated in the presence or absence of OA, we determined that apoB100-lipoproteins in ER vesicles had not become lipidated to VLDLs. VLDL particles resided in the Golgi, but not the ER, after fractionation of OA-treated cells. We conclude that apoB100-lipoproteins exit the ER in COPII vesicles, but under conditions favorable for VLDL formation final lipid loading occurs post-ER.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Gusarova V, Brodsky JL, Fisher EA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference