Reference: Kabani M, et al. (2003) Dependence of endoplasmic reticulum-associated degradation on the peptide binding domain and concentration of BiP. Mol Biol Cell 14(8):3437-48

Reference Help

Abstract

ER-associated degradation (ERAD) removes defective and mis-folded proteins from the eukaryotic secretory pathway, but mutations in the ER lumenal Hsp70, BiP/Kar2p, compromise ERAD efficiency in yeast. Because attenuation of ERAD activates the UPR, we screened for kar2 mutants in which the unfolded protein response (UPR) was induced in order to better define how BiP facilitates ERAD. Among the kar2 mutants isolated we identified the ERAD-specific kar2-1 allele (Brodsky et al. J. Biol. Chem. 274, 3453-3460). The kar2-1 mutation resides in the peptide-binding domain of BiP and decreases BiP's affinity for a peptide substrate. Peptide-stimulated ATPase activity was also reduced, suggesting that the interdomain coupling in Kar2-1p is partially compromised. In contrast, Hsp40 cochaperone-activation of Kar2-1p's ATPase activity was unaffected. Consistent with UPR induction in kar2-1 yeast, an ERAD substrate aggregated in microsomes prepared from this strain but not from wild-type yeast. Overexpression of wild-type BiP increased substrate solubility in microsomes obtained from the mutant, but the ERAD defect was exacerbated, suggesting that simply retaining ERAD substrates in a soluble, retro-translocation-competent conformation is insufficient to support polypeptide transit to the cytoplasm.

Reference Type
Journal Article | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
Kabani M, Kelley SS, Morrow MW, Montgomery DL, Sivendran R, Rose MD, Gierasch LM, Brodsky JL
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference