Take our Survey

Reference: Nakada D, et al. (2003) ATM-related Tel1 associates with double-strand breaks through an Xrs2-dependent mechanism. Genes Dev 17(16):1957-62

Reference Help

Abstract

In budding yeast, TEL1 encodes a protein closely related to ATM. Xrs2 is an Nbs1 homolog and forms a complex with Mre11 and Rad50. We show here that Tel1 associates with double-strand breaks (DSBs) through a mechanism dependent on the C terminus of Xrs2. Although Xrs2 is required for the DNA degradation at DSBs, the C-terminal Xrs2 truncation does not affect the degradation. Tel1 and the C terminus of Xrs2 are similarly involved in cell survival and Rad53 phosphorylation after DNA damage. Our findings suggest that the Tel1 association with DNA lesions is required for the activation of DNA damage responses.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Nakada D, Matsumoto K, Sugimoto K
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference