Take our Survey

Reference: Wood A, et al. (2003) The Paf1 complex is essential for histone monoubiquitination by the Rad6-Bre1 complex, which signals for histone methylation by COMPASS and Dot1p. J Biol Chem 278(37):34739-42

Reference Help

Abstract

Monoubiquitination of histone H2B, catalyzed by Rad6-Bre1, is required for methylation of histone H3 on lysines 4 and 79, catalyzed by the Set1-containing complex COMPASS and Dot1p, respectively. The Paf1 protein complex, which associates with RNA polymerase II, is known to be required for these histone H3 methylation events. During the early elongation stage of transcription, the Paf1 complex is required for association of COMPASS with RNA polymerase II, but the role the Paf1 complex plays at the promoter has not been clear. We present evidence that the Paf1 complex is required for monoubiquitination of histone H2B at promoters. Strains deleted for several components of the Paf1 complex are defective in monoubiquitination of histone H2B, which results in the loss of methylation of lysines 4 and 79 of histone H3. We also show that Paf1 complex is required for the interaction of Rad6 and COMPASS with RNA polymerase II. Finally, we show that the Paf1 complex is required for Rad6-Bre1 catalytic activity but not for the recruitment of Rad6-Bre1 to promoters. Thus, in addition to its role during the elongation phase of transcription, the Paf1 complex appears to activate the function but not the placement of the Rad6-Bre1 ubiquitin-protein ligase at the promoters of active genes.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Wood A, Schneider J, Dover J, Johnston M, Shilatifard A
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference