Take our Survey

Reference: Kreishman-Deitrick M, et al. (2003) NMR analysis of methyl groups at 100-500 kDa: model systems and Arp2/3 complex. Biochemistry 42(28):8579-86

Reference Help

Abstract


Large macromolecular machines are among the most important and challenging targets for structural and mechanistic analyses. Consequently, there is great interest in development of NMR methods for the study of multicomponent systems in the 50-500 kDa range. Biochemical methods also must be developed in concert to produce such systems in selectively labeled form. Here, we present (1)H/(13)C-HSQC spectra of protonated methyl groups in a model system that mimics molecular weights up to approximately 560 kDa. Signals from side chain methyl groups of Ile, Leu, and Val residues are clearly detectable at correlation times up to approximately 330 ns. We have also developed a biochemical procedure to produce the 240 kDa, heteroheptameric Arp2/3 actin nucleation complex selectively labeled at one subunit and obtained (1)H/(13)C-HSQC spectra of this assembly. Sensitivity in spectra of both the Arp2/3 complex and the model system indicate that methyl groups will be useful sources of information in nonsymmetric systems with molecular weights greater than 600 kDa at concentrations less than 100 microM. Methyl analyses will complement TROSY and CRINEPT analyses of amides in NMR studies of structure and molecular interactions of extremely large macromolecules and assemblies.

Reference Type
Journal Article
Authors
Kreishman-Deitrick M, Egile C, Hoyt DW, Ford JJ, Li R, Rosen MK
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference