Reference: Simon E, et al. (2003) Mutagenesis analysis of the yeast Nha1 Na+/H+ antiporter carboxy-terminal tail reveals residues required for function in cell cycle. FEBS Lett 545(2-3):239-45

Reference Help

Abstract


The yeast Nha1 Na(+),K(+)/H(+) antiporter may play an important role in regulation of cell cycle, as high-copy expression of the NHA1 gene is able to rescue the blockage at the G(1)/S transition of cells lacking Sit4 protein phosphatase and Hal3 activities. Interestingly, this function was independent of the role of the antiporter in improving tolerance to sodium cations, it required the integrity of a relatively large region (from residues 800 to 948) of its carboxy-terminal moiety, and was not performed by the fission yeast homolog antiporter Sod2, which lacks a carboxy-terminal tail. Here we show that a hybrid protein composed of the Sod2 antiporter fused to the carboxy-terminal half of Nha1 strongly increased sodium tolerance, but did not allow growth at high potassium nor did rescue growth of the sit4 hal3 conditional mutant strain. Deletion of Nha1 residues from 800 to 849, 900 to 925 or 926 to 954 abolished the function of Nha1 in cell cycle without affecting sodium tolerance. A screening for loss-of-function mutations at the 775-980 carboxy-terminal tail of Nha1 has revealed a number of residues required for function in cell cycle, most of them clustering in two regions, from residues 869 to 876 (cluster A) and 918 to 927 (cluster B). The later is rather conserved in other related antiporters, while the former is not.

Reference Type
Journal Article
Authors
Simon E, Barcelo A, Arino J
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference