Take our Survey

Reference: Kepes F (2003) Periodic epi-organization of the yeast genome revealed by the distribution of promoter sites. J Mol Biol 329(5):859-65

Reference Help

Abstract

The organization of transcription within the eukaryotic nucleus may be expected to both depend on and determine the structure of the chromosomes. This study shows that, in yeast, genes that are controlled by the same sequence-specific transcription factor tend to be regularly spaced along the chromosome arms; a similar period characterizes the spacing of origins of replication, although periodicity is less pronounced. The same period is found for most transcription factors within a chromosome arm. However, different periods are observed for different chromosome arms, making it unlikely that periodicity is caused by dedicated scaffolding proteins. Such regularities are consistent with a genome-wide loop model of chromosomes, in which coregulated genes tend to dynamically colocalize in 3D. This colocalization may also involve co-regulated genes belonging to different chromosomes, as suggested by partial conservation of the respective positioning of different transcription factors around the loops. Thus, binding at genuine regulatory sites on DNA would be optimized by locally increasing the concentration of multimeric transcription factors. In this model, self-organization of transcriptional initiation plays a major role in the functional nuclear architecture.

Reference Type
Journal Article
Authors
Kepes F
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference