Reference: Gerber SA, et al. (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci U S A 100(12):6940-5

Reference Help

Abstract


A need exists for technologies that permit the direct quantification of differences in protein and posttranslationally modified protein expression levels. Here we present a strategy for the absolute quantification (termed AQUA) of proteins and their modification states. Peptides are synthesized with incorporated stable isotopes as ideal internal standards to mimic native peptides formed by proteolysis. These synthetic peptides can also be prepared with covalent modifications (e.g., phosphorylation, methylation, acetylation, etc.) that are chemically identical to naturally occurring posttranslational modifications. Such AQUA internal standard peptides are then used to precisely and quantitatively measure the absolute levels of proteins and posttranslationally modified proteins after proteolysis by using a selected reaction monitoring analysis in a tandem mass spectrometer. In the present work, the AQUA strategy was used to (i) quantify low abundance yeast proteins involved in gene silencing, (ii) quantitatively determine the cell cycle-dependent phosphorylation of Ser-1126 of human separase protein, and (iii) identify kinases capable of phosphorylating Ser-1501 of separase in an in vitro kinase assay. The methods described here represent focused, alternative approaches for studying the dynamically changing proteome.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S. | In Vitro
Authors
Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference