Reference: Xu C, et al. (2003) In vivo analysis of nucleolar proteins modified by the yeast arginine methyltransferase Hmt1/Rmt1p. RNA 9(6):746-59

Reference Help

Abstract

In this report, we have investigated the impact of arginine methylation on the Gar1, Nop1, and Nsr1 nucleolar proteins in Saccharomyces cerevisiae. Although previous reports have established that protein arginine methylation is important for nucleocytoplasmic shuttling, they have focused on the examination of heterogeneous nuclear ribonucleoproteins (hnRNPs). We have extended this analysis to several nucleolar proteins that represent a distinct functional class of arginine-methylated proteins. We first developed an in vivo assay to identify proteins methylated by the Hmt1 arginine methyltransferase. This assay is based on the fact that the Hmt1 enzyme utilizes S-Adenosyl-L-methionine as the methyl donor for protein arginine methylation. Following SDS polyacrylamide electrophoresis, 11 distinct proteins were identified as substrates for the Hmt1 methyltransferase. Hmt1p overexpression did not increase the methylation level on these proteins, suggesting they are fully methylated under the conditions examined. Three of the radiolabeled proteins were confirmed to be Gar1p, Nop1p, and Nsr1p. To monitor the cellular localization of these proteins, functional GFP fusion proteins were generated and found to be localized to the nucleolus. This localization was independent of arginine methylation. Furthermore, all three proteins examined did not export to the cytoplasm. In contrast, arginine methylation is required for the export of the nuclear RNA-binding proteins Npl3p, Hrp1p, and Nab2p. The observation that three nucleolar proteins are modified by Hmt1p but are not exported from the nucleolus implies an alternate role for arginine methylation.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Xu C, Henry PA, Setya A, Henry MF
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference