Reference: Baron-Benhamou J, et al. (2003) The interaction of the cap-binding complex (CBC) with eIF4G is dispensable for translation in yeast. RNA 9(6):654-62

Reference Help

Abstract

In eukaryotes, the m(7)GpppN cap structure is added to all nascent RNA polymerase II transcripts, and serves important functions at multiple steps of RNA metabolism. The predominantly nuclear cap-binding complex (CBC) binds to the cap during RNA synthesis. The predominantly cytoplasmic eukaryotic initiation factor 4F (eIF4F) is thought to replace CBC after export of mature mRNA to the cytoplasm, and mediates the bulk of cellular translation. Yeast as well as mammalian CBC interacts in vitro with eIF4G, a subunit of eIF4F. In this work, we investigate a potential role of this interaction during translation in yeast. We identify a mutation (DR548/9AA) in Tif4631p, one of two isoforms of yeast eIF4G, that abolishes its binding to CBC. Cells expressing this mutant protein as the sole source of eIF4G grow at wild-type rates, and bulk cellular translation, as assessed by metabolic labeling and polysome profile analysis, is unchanged. Importantly, we find that the DR548/9AA mutation neither diminishes nor delays the translation of newly induced reporter mRNA. Finally, microarray analysis reveals marked transcriptome alterations in CBC subunit deletion strains, whereas eIF4G point mutants have essentially a wild-type transcriptome composition. Collectively, these data suggest that in yeast, the phenotypic consequences of CBC deletions are separable from its interaction with eIF4G, and that the CBC-eIF4G interaction is dispensable for a potential "pioneering round" of translation in yeast.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Baron-Benhamou J, Fortes P, Inada T, Preiss T, Hentze MW
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference