Take our Survey

Reference: Heinzer AK, et al. (2003) A very long-chain acyl-CoA synthetase-deficient mouse and its relevance to X-linked adrenoleukodystrophy. Hum Mol Genet 12(10):1145-54

Reference Help

Abstract


X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative and endocrine disorder resulting from mutations in ABCD1 which encodes a peroxisomal membrane protein in the ATP binding cassette superfamily. The biochemical signature of X-ALD is increased levels of saturated very long-chain fatty acids (VLCFA; carbon chains of 22 or more) in tissues and plasma that has been associated with decreased peroxisomal very long-chain acyl-CoA synthetase (VLCS) activity and decreased peroxisomal VLCFA beta-oxidation. It has been hypothesized that ABCD1, which has no demonstrable VLCS activity itself, has an indirect effect on peroxisomal VLCS activity and VLCFA beta-oxidation by transporting fatty acid substrates, VLCS protein or some required co-factor into peroxisomes. Here we report the characterization of a Vlcs knockout mouse that exhibits decreased peroxisomal VLCS activity and VLCFA beta-oxidation but does not accumulate VLCFA. The XALD/Vlcs double knockout mouse has the biochemical abnormalities observed in the individual knockout mice but does not display a more severe X-ALD phenotype. These data lead us to conclude that (1) VLCFA levels are independent of peroxisomal fatty acid beta-oxidation, (2) there is no ABCD1/VLCS interaction and (3) the common severe forms of X-ALD cannot be modeled by decreasing peroxisomal VLCS activity in the XALD mouse.

Reference Type
Journal Article
Authors
Heinzer AK, Watkins PA, Lu JF, Kemp S, Moser AB, Li YY, Mihalik S, Powers JM, Smith KD
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference