Reference: Griffioen G, et al. (2003) Feedback inhibition on cell wall integrity signaling by Zds1 involves Gsk3 phosphorylation of a cAMP-dependent protein kinase regulatory subunit. J Biol Chem 278(26):23460-71

Reference Help

Abstract


We report here that budding yeast cAMP-dependent protein kinase (cAPK) is controlled by heat stress. A rise in temperature from 30 to 37 degrees C was found to result in both a higher expression and an increased cytoplasmic localization of its regulatory subunit Bcy1. Both of these effects required phosphorylation of serines located in its localization domain. Surprisingly, classic cAPK-controlled processes were found to be independent of Bcy1 phosphorylation, indicating that these modifications do not affect cAPK activity as such. Alternatively, phosphorylation may recruit cAPK to, and thereby control, a specific subset of (perhaps novel) cAPK targets that are presumably localized extranuclearly. Zds1 and Zds2 may play a role in this process, since these were found required to retain hyperphosphorylated Bcy1 in the cytoplasm at 37 degrees C. Mck1, a homologue of mammalian glycogen synthase kinase 3 and a downstream component of the heat-activated Pkc1-Slt2/Mpk1 cell wall integrity pathway, is partly responsible for hyperphosphorylations of Bcy1. Remarkably, Zds1 appears to act as a negative regulator of cell wall integrity signaling, and this activity is dependent in part on the phosphorylation status of Bcy1. Thus, Mck1 phosphorylation of Bcy1 and Zds1 may constitute an unprecedented negative feedback control on the cell wall integrity-signaling pathway.

Reference Type
Journal Article
Authors
Griffioen G, Swinnen S, Thevelein JM
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference