Reference: Snow BE, et al. (2003) Functional conservation of the telomerase protein Est1p in humans. Curr Biol 13(8):698-704

Reference Help

Abstract

Eukaryotic telomerase contains a telomerase reverse transcriptase (TERT) and an RNA template component that are essential for telomerase catalytic activity and several other telomerase-associated factors of which only a few appear to be integral enzyme components [1-3]. The first essential telomerase protein identified was S. cerevisiae Est1p, whose deletion leads to ever-shorter telomeres despite the persistence of telomerase activity [4-6]. Extensive genetic and biochemical data show that Est1p, via its interaction with the telomerase RNA and telomere end DNA binding complex Cdc13p/Stn1p/Ten1p, promotes the ability of telomerase to elongate telomeres in vivo [7-22]. The characterization of Est1p homologs outside of yeast has not been documented. We report the characterization of two putative human homologs of Est1p, hEST1A and hEST1B. Both proteins specifically associated with telomerase activity in human cell extracts and bound hTERT in rabbit reticulocyte lysates independently of the telomerase RNA. Overproduction of hEST1A cooperated with hTERT to lengthen telomeres, an effect that was specific to cells containing telomerase activity. Like Est1p, hEST1A (but not hEST1B) exhibited a single-stranded telomere DNA binding activity. These results suggest that the telomerase-associated factor Est1p is evolutionarily conserved in humans.

Reference Type
Journal Article
Authors
Snow BE, Erdmann N, Cruickshank J, Goldman H, Gill RM, Robinson MO, Harrington L
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference