Take our Survey

Reference: Bergmann S, et al. (2003) Iterative signature algorithm for the analysis of large-scale gene expression data. Phys Rev E Stat Nonlin Soft Matter Phys 67(3 Pt 1):031902

Reference Help

Abstract


We present an approach for the analysis of genome-wide expression data. Our method is designed to overcome the limitations of traditional techniques, when applied to large-scale data. Rather than alloting each gene to a single cluster, we assign both genes and conditions to context-dependent and potentially overlapping transcription modules. We provide a rigorous definition of a transcription module as the object to be retrieved from the expression data. An efficient algorithm, which searches for the modules encoded in the data by iteratively refining sets of genes and conditions until they match this definition, is established. Each iteration involves a linear map, induced by the normalized expression matrix, followed by the application of a threshold function. We argue that our method is in fact a generalization of singular value decomposition, which corresponds to the special case where no threshold is applied. We show analytically that for noisy expression data our approach leads to better classification due to the implementation of the threshold. This result is confirmed by numerical analyses based on in silico expression data. We discuss briefly results obtained by applying our algorithm to expression data from the yeast Saccharomyces cerevisiae.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Bergmann S, Ihmels J, Barkai N
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference