Reference: Lagorce A, et al. (2003) Genome-wide analysis of the response to cell wall mutations in the yeast Saccharomyces cerevisiae. J Biol Chem 278(22):20345-57

Reference Help

Abstract


Perturbations of the yeast cell wall trigger a repair mechanism that reconfigures its molecular structure to preserve cell integrity. To investigate this mechanism, we compared the global gene expression in five mutant strains, each bearing a mutation (i.e. fks1, kre6, mnn9, gas1, and knr4 mutants) that affects in a different manner the cell wall construction. Altogether, 300 responsive genes were kept based on high stringency criteria during data processing. Functional classification of these differentially expressed genes showed a substantial subset of induced genes involved in cell wall construction and an enrichment of metabolic, energy generation, and cell defense categories, whereas families of genes belonging to transcription, protein synthesis, and cellular growth were underrepresented. Clustering methods isolated a single group of approximately 80 up-regulated genes that could be considered as the stereotypical transcriptional response of the cell wall compensatory mechanism. The in silico analysis of the DNA upstream region of these co-regulated genes revealed pairwise combinations of DNA-binding sites for transcriptional factors implicated in stress and heat shock responses (Msn2/4p and Hsf1p) with Rlm1p and Swi4p, two PKC1-regulated transcription factors involved in the activation genes related to cell wall biogenesis and G1/S transition. Moreover, this computational analysis also uncovered the 6-bp 5'-AGCCTC-3' CDRE (calcineurin-dependent response element) motif in 40% of the co-regulated genes. This motif was recently shown to be the DNA binding site for Crz1p, the major effector of calcineurin-regulated gene expression in yeast. Taken altogether, the data presented here lead to the conclusion that the cell wall compensatory mechanism, as triggered by cell wall mutations, integrates three major regulatory systems: namely the PKC1-SLT2 mitogen-activated protein kinase-signaling module, the "global stress" response mediated by Msn2/4p, and the Ca2+/calcineurin-dependent pathway. The relative importance of these regulatory systems in the cell wall compensatory mechanism is discussed.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Lagorce A, Hauser NC, Labourdette D, Rodriguez C, Martin-Yken H, Arroyo J, Hoheisel JD, Francois J
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference